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Omega polynomial of a graph G is defined on the ground of "opposite edge strips" ops. The Sadhana, Theta and PI  
polynomial can also be calculated by ops counting.  In this paper we compute these polynomials of phenylenes and of the 
corresponding hexagonal squeeze. Also an efficient formula for calculating the Sadhana index of phenylenes and their 
hexagonal squeeze is given.  
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1. Introduction 
 
Graph polynomials were introduced in mathematical 

chemistry to give further insights into the structure and 

properties of chemical graphs. In particular, the first 

derivative of such polynomials computed at a given value 

returns a corresponding topological index of interest. 

A graph polynomial, also called a counting polynomial, 

can be written as  k

kxkGmxGP ),(),( ,  with the 

exponents showing the extent of partitions p(G), 

)()( GPGp  of a graph property P(G) while the 

coefficients m(G,k) are related to the number of partitions 

of extent k. 

Counting polynomials have been introduced, in the 

Mathematical Chemistry literature, by Hosoya[12] to 

count independent edge sets (the Z-polynomial) and the 

distances in the graph (the Wiener polynomial, latter 

called the Hosoya polynomial and denoted H(G,x)[9,19] 

Other counting polynomials are the sextet 

polynomials[13,14],  independence, [10,11,21] domino, 

[20] star[8] and clique[15]  polynomials. More about 

polynomials the reader can find in ref [3]  

     Let ),( VEG  be a connected graph, with the vertex 

set V(G) and edge set E(G). Two edges e = uv and f = xy of 

G are called codistant e co f if they obey the following 

relation: [16]  

),(1),(1),(),( yudxudyvdxvd   

where d is the usual shortest-path distance function. 

Relation co is reflexive, that is, e co e holds for any edge e 

of G; it is also symmetric, if e co f then f co e. In general, 

relation co is not transitive, an example showing this fact 

is the complete bipartite graph nK ,2 . If “co” is also 

transitive, thus an equivalence relation, then G is called a 

co-graph and the set of edges 

}|)({)( ecofGEfeC  is called an orthogonal 

cut oc of G , E(G) being the union of disjoint orthogonal 

cuts: 

jiCCCCCGE jik  ,,)( 21  . 

Klavžar in [18] has shown that relation co is a theta 

Djoković-Winkler relation, see [7,23]. 

Let e = uv and f = xy be two edges of G which are 

opposite or topologically parallel and denote this relation 

by e op f. A set of opposite edges, within the same 

face/ring, eventually forming a strip of adjacent 

faces/rings, is called an opposite edge strip ops, which is a 

quasi-ortogonal cut qoc (i.e., the transitivity relation is not 

necessarily obeyed). Note that co relation is defined in the 

whole graph while op is defined only in a face/ring. The 

length of ops is maximal irrespective of the starting edge.  

Let m(G,c) be the number of ops strips of length c. 

The Omega polynomial [4] is defined as 

 

.),(),(  
c

cxcGmxG  

Other polynomial also related to the ops in G, but counting 

the non-opposite edges is the Sadhana Sd polynomial [1] 

defined as 

 

 
c

cGExcGmxGSd |))|),(),(  

Let now the set of edges codistant to edge e of G be C(e). 

A Θ-polynomial [5] of G, counting the edges equidistant 

to the all reference edges e, is written as 

 

.);(
)(

|)(|



GEe

eCxxG

 
If the polynomial counts the edges non-equidistant to the 

all reference edges e, it is called the Π-polynomial [5] and 

is defined as 
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.);(
)(

|)(||)(|



GEe

eCGExxG

 
 

Suppose now G is a co-graph; then [6] 
 

 
c

cxccGmxG ),(),(  

and  
c

cGExccGmxG |))|),(),( . 

The first derivative (computed at x = 1) of these counting 

polynomials give interesting inter-relations and valuable 

information on the graph 
 

.|)(|),()1;( GEccGmG
c

   

),()|)((|),()1,( GSdcGEcGmGSd
c

  

)(),()1;( 2 GccGmG
c

   

)()|)((|),()1;( GcGEccGmG
c

   

Let G be a connected graph, u and v  be vertices of G 

and e = uv. The number of edges of G lying closer to u 

than to v is denoted by )|( Geneu  and the number of 

edges of G lying closer to v than to u is denoted by 

)|( Genev . The PI polynomial of G is defined as  

 

 


Vvu

vuNxxGPI
},{

),();( , 

where )|()|(),( GenGenvuN eveu  , if e = uv; and 

= 0, otherwise. 

Now If G be a bipartite co-graphs it is well known 

fact that [17] 
 

),(),(),( |)(| xGxccGmxGPI
c

cGE    

 

 

2. Main results and discussion 
 
Phenylenes are a class of chemical compounds in 

which the carbon atoms form 6- and 4-membered cycles. 

Each 4-membered cycle (=square) is adjacent to two 

disjoint 6-membered cycles (=hexagons), and no two 

hexagons are adjacent. Their respective molecular graphs 

are also referred to as phenylenes. By eliminating, 

“squeezing out,” the squares from a phenylene, a 

catacondensed hexagonal system (which may be jammed) 

is obtained, called the hexagonal squeeze of the respective 

phenylene [22]. Clearly, there is a one-to-one 

correspondence between a phenylene (PH) and its 

hexagonal squeeze (HS). Both possess the same number 

(h) of hexagons. In addition, a PH with n hexagons 

possesses h − 1 squares. The number of vertices of PH and 

HS are 6h and 4h +2, respectively; The number of edges 

of PH and HS are 8h −2 and 5h +1, respectively. An 

example of PH and its HS is shown in Fig. 2.  

  Let we introduce some conceptions in a PH 

analogously in a hexagonal system. The linear chain PH is 

a PH without kinks (see Fig. 1), where the kinks are the 

branched or angularly connected hexagons. A segment of 

a PH is a maximal linear chain in the PH, including the 

kinks and/or terminal hexagons at its end. The number of 

hexagons in a segment S is called its length and is denoted 

by l(S). For any segment S of a PH, nS  )(2  .  

Particularly, a PH is a full kink one if and only if the 

lengths of its segment are all equal to 2. 

A PH consists of a sequence of segments 

sSSS ,,, 21  , 1s , with Lengths ,)( iiS    

,,,2,1 si    where 1
1




sn
s

i

i , since two 

neighboring segments have always one hexagon in 

common. 
 

 

 
 

Fig. 1. The linear chain of phenylenes and its  

hexagonal squeezes 

 

 

In this section, we will give efficient formulas for 

calculating the Omega and related polynomials of PHs and 

of the corresponding HS. 

Theorem 1. Let PH be a phenylene with h hexagons 

consisting of 1s  segments sSSS ,,, 21   with lengths 

s ,,, 21 . Then 





s

i

lixxshxPH
1

22)3(),(  





s

i

l

i
ixlxshxPH

1

22 2)3(2),(  




 
s

i

lhh ixxshxPHSd
1

22848)3(),(  




 
s

i

lh

i

h ixlxshxPHPI
1

22848 2)3(2),(
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Proof. Let us first observe that the edges of  PH fall 

into two distinct classes, namely the ones which are cut 

across by the straight line passing through the centers of 

the hexagonal and squares of iS  and those which are not. 

We denote the edges of the first type contained in iS  by 

)( ic SE . 

The edges )( ic SE  ( si 1 ) in each iS  form a 

strip iC  of length i2 ( si 1 ). On other hand two 

opposite edges in each hexagonal and squares (except the 

edges belong to )( ic SE )  form  a strip  0C  of length 2, 

see Fig. 2. Thus the number of strips of length 2 is equal to 

.314

|))(||)((|)2,(

1

1

2
1

shh

SEGEPHm

s

i

i

s

i

ic















 

Using definition of mentioned polynomials, the result is 

follow.  
     

 
 

Fig. 2. The Strips of a phenylene (PH) and its hexagonal 

 squeeze (HS) 

 

 

In comparing with PH, graph HS has h-1 squares less 

than PH.  So 1|)(|  iic SE  . On other hand, Since 

two opposite edges in every square form a strip of length 

2, so .12)2,(  shSHm  

Theorem 2.  Let PH be phenylene and HS its 

hexagonal squeeze, both having h Hexagons consisting of 

1s  segments sSSS ,,, 21   with lengths 

s ,,, 21 . Then  







s

i

lixxshxHS
1

12)12(),(  







s

i

l

i
ixlxshxHS

1

12 )1()12(),(  




 
s

i

lhh ixxshxHSSH
1

3848)12(),(  












s

i

lh

i

h

ixl

xshxHSPI

1

38

48

)1(2

)12(2),(

 

 

In following tables we give formulas for mentioned 

polynomials of linear chain and full kink of phenylenes 

and of corresponding hexagonal squeeze. 
 

 

Table 1. The mentioned polynomials of linear 

 chain of phenylene PH 

 

polynomial PH 

Ω 

 

 
 

Sd 

 

PI 

 

 
 

 
 

 
 

 
 

 

Table 2. The mentioned polynomials of linear 

 chain of phenylene HS 

 

polynomial HS 

 

Ω 

 

 
 

Sd 

 

PI 

 

 
 

 

 

 
 

 
 

 

Table 3. The mentioned polynomials of full kink of  

phenylene PH 

 

polynomial PH 

 

Ω 

 

 
 

Sd 

 

PI 
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Table 4. The mentioned polynomials of full kink of 

phenylene HS 

 

polynomial HS 

Ω 

 

 
 

Sd 

 

PI 

 
 

 
 

 
 

 

 

 

 

THE SD INDEX OF PH AND HS 
 

Aziz and at.al. [2] computed Sadhana index of 

phenylenes only for linear chain of pH. They proved that 
 

)28)(13())((  hhPHLSd
 

 

In this section, we give exact formulas for Sd index of 

arbitrary phenylenes and their hexagonal squeeze. By 

derivative of Sd polynomial and computed at x = 1, we 

obtain 
 

21424)1,()( 2'  hhPHSdPHSd
 

 

316)1,()( 2'  hhHSSdPHSd  

 

The above text implies that Sadhana index of 

phenylenes and their hexagonal squeeze only depends on 

the number of Hexagos and dose not depends on the length 

and number of segments. Thus we have the following 

result. 

Corollary 3. Let )(PHL  and )(PHF  be the linear 

chain and full kink of phenylene PH, respectively. Then 

 

))(())(()( PHFSdPHLSdPHSd 
 

 

))(())(()( HSFSdHSLSdHSSd   
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